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ABSTRACT: The Hurricane Analysis and Forecasting System (HAFS) is the next-generation, FV3-based tropical cy-
clone (TC) forecasting system. Unlike operational implementations of NOAA’s Hurricane Weather Research and Fore-
cast (HWRF) modeling system, current data assimilation (DA) capabilities in HAFS permit the uninterrupted basin-wide
assimilation of measurements. This feature of HAFS opens a variety of new research directions for TC prediction, includ-
ing new strategies for DA algorithm development and self-contained probabilistic forecasting. The present research fo-
cuses more narrowly on new opportunities HAFS brings for optimizing the use of satellite measurements for TC
prediction. While satellite radiometers provide a wealth of information for characterizing temperature, moisture, and wind
in TC environments, the provided measurements are often biased and contain unknown cross-channel error correlations.
For mature global modeling systems, these statistics are estimated from information gathered during DA, namely, innova-
tions collected over large spatial and temporal training periods. The estimated statistics, however, are imperfect owing to
unknown error sources such as model process error, which are difficult to separate from observation error. As such, bias
and uncertainty specifications that rely on information from external models are suboptimal}as is the current strategy for
HWRF. In this paper, it will be demonstrated that bias estimation for satellite radiance observations is particularly sensitive
to common design choices, such as using a bias model trained from the Global Data Assimilation System instead of within
the native modeling system. Implications of this finding for TC prediction are examined over a 6-week period from 2020,
which included the development and intensification of nine tropical cyclones.

SIGNIFICANCE STATEMENT: Tropical cyclone–focused numerical weather prediction is difficult due to complex
nonlinear physical processes and a lack of in situ observations over open ocean. Prediction systems rely heavily on satel-
lite radiance measurements, which have high spatial–temporal resolution over the entire domain but require bias cor-
rection. Estimation of observation bias requires long training periods and large spatial domain coverage, which is
typically not permitted outside of global models. However, bias specification is strongly model dependent, as bias cor-
rection methods cannot easily separate model and observation bias. In this study, we perform satellite radiance bias
specification internally for an experimental version of the NOAAHurricane Analysis and Forecast System and demon-
strate major implications for tropical cyclone prediction.

KEYWORDS: Tropical cyclones; Radiances; Satellite observations; Bias; Numerical weather prediction/forecasting;
Data assimilation

1. Introduction

The accurate prediction of tropical cyclone (TC) track and in-
tensity has always presented a unique problem. The extreme
weather event, which lies somewhere in between the traditionally
established spatial–temporal classifications of synoptic scale and
mesoscale, develops predominately over the observation-sparse
ocean and produces storm conditions too intense for common
surface-level observation systems to properly measure. For mod-
ern numerical weather prediction (NWP) systems, these issues re-
main significant obstacles (Emanuel and Zhang 2016). To depict
the TC inner-core, limited-area hurricane-focused NWP systems,
such as the current operational Hurricane Weather Research and
Forecasting (HWRF) Model, require a high-resolution grid and
ample inner-core observations, such as those collected during air-
craft reconnaissancemissions (Zhang et al. 2009, 2013; Aksoy et al.
2012; Sippel et al. 2022). However, given the size of the storm and

its interaction with broad synoptic-scale features, these limited-
area models (LAMs) must also be able to accurately characterize
synoptic-scale flow over a large domain, particularly for the pur-
pose of predicting changes in TC structure as well as track and in-
tensification (Carr and Elsberry 1997; Hanley et al. 2001; Zeng
et al. 2007; Hendricks et al. 2010; Poterjoy and Zhang 2014, 2016;
Jones et al. 2018).

Given the sparsity of in situ measurements over the open
ocean, TC-focused NWP systems rely heavily on satellite radi-
ance measurements, which have a high spatial and temporal
resolution over the entire model domain (Prasad et al. 1998).
These observations primarily provide information on atmo-
spheric brightness temperature (BT), from which atmospheric
properties such as temperature, moisture, and wind can be de-
termined (Deng et al. 2009). Studies have shown improve-
ments in TC prediction from assimilating satellite radiance
both from infrared and microwave channels (McNally et al.
2000; Zapotocny et al. 2008; Li and Liu 2009; Liu et al. 2012;
Schwartz et al. 2012; Xu et al. 2013; Zou et al. 2013). In this study,
we concentrate on clear-sky radiances, meaning observationsCorresponding author: Joseph Knisely, jknisely@umd.edu
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over cloudless or thin cloud regions, versus cloudy- or all-sky ra-
diance measurements, which describe observations over thick
clouds or precipitating clouds. Although all-sky radiance obser-
vations represent the most comprehensive description of atmo-
spheric state available, evaluating BT over cloudy regions is
complicated by nonlinearity in the observation operator (Geer
and Bauer 2011; Zhu et al. 2016; Minamide and Zhang 2017;
Poterjoy et al. 2017). Furthermore, complex cloud microphysical
processes are difficult to parameterize and modern radiative
transfer models are imperfect, which both result in degraded
model representations of cloudy BTs. For these reasons,
cloudy-sky radiances are often removed or used sparingly for
DA purposes (Reale et al. 2018). On the other hand, clear-sky
radiances are much more easily evaluated and provide valuable
temperature and moisture field data across large areas. For
these reasons, the use of clear-air radiance measurements for
numerical weather prediction has matured more rapidly than
cloudy-sky measurements at operational modeling centers
(McNally et al. 2007; Collard and McNally 2009).

Despite the known benefits, clear-sky radiance observations
have been shown to be systematically biased, and thus require a
bias correction (BC) scheme. Bias can arise from several differ-
ent sources, namely, from the radiative transfer model, from the
calibration of the satellite instrument, as well as errors in the
background model state (Derber and Wu 1998; Zhu et al. 2014;
Liu et al. 2018; Reale et al. 2018). With a method described in
detail in the following section, the Hurricane Analysis and Fore-
cast System (HAFS) currently uses the Gridpoint Statistical In-
terpolation (GSI) variational DA scheme, which performs bias
correction twice during the analysis, once for each outer loop
(Hu et al. 2016). The bias correction value is added to the obser-
vation space prior and consists of a sum of weighted bias predic-
tors. The predictors are a function of atmospheric state, while
the corresponding weights are determined from analysis innova-
tion statistics during the minimization of the variational cost
function (Benáček and Mile 2019). These statistics are collected
continuously, meaning the DA system must be fully cycled, and
cover a sufficiently large domain. For this reason, it is common
for this technique to be employed in global systems but it is
rarely used for LAMs given the restricted domain size as well as
other common restrictions, such as the adoption of partially cy-
cled DA (Lin et al. 2017; Poterjoy et al. 2021).

Instead, LAMs import predictor weight values from exter-
nally trained models. For example, HWRF is a partially cycled
system that regularly adopts the Global Data Assimilation Sys-
tem (GDAS) analysis for the parent domain (Zou et al. 2013;
Mehra et al. 2018), thus requires predictor weights from GDAS.
This strategy is not ideal, given that the bias correction method
does not differentiate between various sources of bias and thus
would not be able to separate bias imposed by the externally
trained model (Rizzi and Matricardi 1998; Poterjoy et al. 2021).

The HAFS is NOAA’s next-generation FV3-based TC fore-
casting system.While early operational implementations of HAFS
will strongly resemble the DA methodology used for HWRF, re-
search versions of HAFS can operate within a flexible DA frame-
work that allows users to avoid many of the heuristic design
choices that are common for operational models. For example,
HAFS has the ability to perform fully cycled DA across its entire

domain, allowing for the continuous updating of BC predictor
weights during each analysis cycle. This capability opens the door
not just to online satellite radiance bias correction, but also many
other experimental techniques that require a fully cycling system
(Poterjoy et al. 2021). For this paper, we will focus more narrowly
on the effects of the online BC technique, and compare it to
model results wherein BC parameters are adopted fromGDAS.

In section 2, we detail the radiance bias correction method-
ology and include relevant equations. Section 3 describes the
data assimilation framework, model physics, and relevant ob-
servation details. Section 4 presents results in the form of domain-
and time-averaged error verification, model field comparisons, as
well as a case study of a notable TC that developed over the model
time period. Section 5 gives a summary and the conclusions.

2. Radiance bias correction

To properly use satellite radiance BT measurements, we
must correct biases between the observed radiances and first-
guess model values. The one-step “enhanced” bias correction
scheme is performed within GSI, and is described in detail by
Zhu et al. (2014). For this study, we provide an abbreviated
description of how this method operates within GSI.

The observation operator h̃ is described by

h̃(x, b) 5 h(x) 1 b(x, b), (1)

where x is the model state, b represents predictor coeffi-
cients, and h(x) represents the radiative transfer model.
HAFS incorporates the Joint Center for Satellite Data As-
similation (JCSDA) Community Radiative Transfer Model
(CRTM) as a forward radiative transfer model to compute
model-derived BT for various instruments and channels
(Han et al. 2006).

The function b(x, b) is represented by a linear combination
of Np predictor variables pk(x), where k 5 0, 1, 2, … , Np,
with corresponding predictor coefficients bk. Thus, we have

b(x, b) 5 b0 1 ∑
Np

k51
bkpk(x): (2)

Choices of predictors include four polynomials for scan angle;
global offset; emissivity predictor; cloud liquid water (CLW)
predictor; temperature lapse rate predictor; and square of the
temperature lapse rate predictor. The emissivity predictor tends
to be quite large over land for near-surface channels and was
formulated to account for differences in emissivity over land
versus sea. On the other hand, the CLW predictor is applied to
microwave radiances over oceans only. This predictor tends to
be small and only applies to clear-sky radiance measurements.
Although the quality control procedure is intended to screen
data affected by thick clouds and precipitation, some cloud con-
tamination is missed, and this predictor is included to fix such
biases. Finally, the lapse rate and lapse rate squared terms con-
nect changes in transmittance between vertical layers with
changes in temperature, and ultimately BT bias (Zhu et al.
2014). These coefficients are estimated during the minimization
of the cost function:
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J(x, b) 5 1
2
(x 2 xb)TB21

x (x 2 xb) 1
1
2
(b 2 bb)TB21

b (b 2 bb)

1
1
2
[y 2 h̃(x,b)]TR21[y 2 h̃(x, b)], (3)

where y represents observations, xb and bb are first-guess esti-
mates for x and b, respectively, and Bx is the background-error
covariance for x. The matrix Bb is the block-diagonal background-
error covariance for predictor coefficients, given by

Bb 5

B
(1)
b 0

. .
.

0 B(J)
b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where B
(j)
b is a diagonal matrix of error standard deviations

for channel j (j 5 1, 2, … , Nc), specified as 10.0 for all coeffi-
cients of all channels (Zhu et al. 2014).

To minimize the cost function, we can combine the control
vectors x and b into a single control vector z, such that

zT 5 [xT, bT], (5)

with background of zT 5 [xTb , bT
b ]. Assuming no cross covari-

ance between x and b, we write the error covariance matrix B
as

B 5
Bx 0
0 Bb

[ ]
: (6)

The cost function J is then given by

J(z) 5 1
2
(z 2 zb)TB21(z 2 zb) 1

1
2
[y 2 h̃(z)]TR21[y 2 h̃(z)] ?

(7)

In addition, several channels are designated as “passive”
channels, meaning these channels are read into GSI but do
not impact the analysis. These channels may be monitored for
research or quality control purposes, and are bias corrected in
a manner similar to assimilated observations.

We differentiate our experiments by the technique through
which we initialize the first-guess predictor coefficients at each
cycle during data assimilation. Our control experiment re-
trieves GDAS-generated bias correction data for each cycle to
serve as first-guess coefficients, while the “online” experiment
uses the above variational (VarBC) method to generate the
predictor coefficients during each analysis step. The coeffi-
cients are updated during each outer-loop calculation, thus
twice for each analysis (Hu et al. 2016).

3. Model configuration

a. Forecast and analysis

HAFS is the next-generation operational analysis and pre-
diction system for hurricane forecasting at NOAA. The cur-
rent options for HAFS feature a uniform global model with a
high-resolution nest (HAFS-global-nest) and a stand-alone

high-resolution regional model (HAFS-SAR). For our re-
search, we are utilizing the HAFS-SAR domain configuration,
a version of which will become operational in summer 2023.
Henceforth we will refer to this configuration of the model
simply as HAFS. Like the operational HAFS, we use FV3-
SAR and ensemble-based variational data assimilation with
the ensemble pulled from GDAS for background uncertainty
specification. Unlike the operational HAFS, our domain re-
mains in a fixed location over multiple storms and does not
make use of high-resolution nests or vortex relocation and
uses 3D-Ensemble-Var (3DEnVar) in place of 4D-Ensemble-
Var, which is adopted operationally. We choose to omit vor-
tex relocation not only because we believe it will complicate
the interpretation of our results, but also because we do not
see it being used in the long term for TC data assimilation.
Finally, we perform our own estimation of predictors for the
bias correction model, as explained in more detail in section 3c
(Dong et al. 2020; Hazelton et al. 2021; Gopalakishnan et al.
2021).

The FV3 dynamical core for HAFS is based on a nonhydro-
static finite volume solver using a Lagrangian vertical coordi-
nate (Hazelton et al. 2018). The model domain adopted for
our study uses a single grid of 1440 3 1080 horizontal grid
cells, with an approximate 6-km grid spacing, and 81 vertical
levels in sigma-pressure hybrid coordinates. The lowest
model level is about 25 m above the surface and the top iso-
baric level is 2 hPa. The domain is centered at 258N, 608W,
with a 109.58 span for longitude and a 68.28 span for latitude,
as seen in Fig. 1. For our experiments, boundary conditions
and the first set of initial conditions are interpolated from
the 2020 operational global FV3-based GFS (;13-km hori-
zontal spacing) onto the 6-km HAFS domain. Boundary
conditions are provided every 6 h from the same global GFS
forecasts (Dong et al. 2020).

As previously mentioned, we use a GSI-based 3DEnVar
data assimilation system. The data assimilation updates a sin-
gle deterministic model solution every 6 h, using background
error covariance estimated entirely from the 80-member 6-h
GEFS forecasts used by the operational GDAS (Bannister
2017)}and no static error covariance. In addition, we employ
the first guess at the appropriate time (FGAT) technique over

FIG. 1. In blue, the entire HAFS-SAR model domain. In orange, a
smaller subdomain selected for error verification (see section 4).
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the 6-h DA window to account for differences between actual
observation times and background times.

Consistent with Poterjoy et al. (2021), our configuration of
HAFS does not make use of vortex relocation or finer-resolution
nests, nor does it regularly recenter the model state onto GDAS
solutions, which is a technique employed by operational LAMs.
The partial-cycling strategy is often used to prevent model drift
over time, which is often due to deficiencies in model physics,
data assimilation, and boundary conditions. Nevertheless, we
find our model to exhibit only a limited systematic change in
background errors, which were determined from a careful in-
spection of observation-space statistics accumulated during the
DA experiments.

b. Model physics

We use a model physics configuration that resembles the
operational NCEP GFS version 16 (GFSv16), but with modifi-
cations that reflect boundary layer processes that are uniquely
important for TCs. The physics suites employed include the
following: the GFS Rapid Radiative Transfer Model for GCMs
(RRTMG) shortwave/longwave radiation scheme (Mlawer et al.
1997); the GFS scale-aware simplified Arakawa–Schubert
(SA-SAS) deep convection scheme (Han et al. 2017); the
Noah-multiparameterization land surface model (Noah-MP
LSM) (Niu et al. 2011); the GFS scale-aware TKE-based moist
eddy-diffusion mass-flux (EDMF) PBL and free atmospheric
turbulence scheme (Han and Bretherton 2019); the GFS sur-
face layer scheme with HWRF exchange coefficients (Zheng
et al. 2017); and the GFS orographic gravity wave drag scheme
(Kim and Arakawa 1995).

The model configuration also features Community Media-
tor for Earth Prediction Systems (CMEPS)-based ocean cou-
pling with the Hybrid Coordinate Ocean Model (HYCOM),
which is described in detail in Chassignet et al. (2007, 2009).
The HYCOM system features a 1/128 resolution North Atlan-
tic basin domain with 41 vertical levels, initial conditions from
NCEP’s Real Time Ocean Forecast System (RTOFS), persis-
tent oceanic lateral boundary conditions, and atmospheric
forcing from GFSv16 for nonoverlapping areas.

c. Bias correction configurations

In this section, we outline a pair of experiments, hereby referred
to as “control” or “GDAS BC” versus “online” or “HAFS BC,”
that examine the effectiveness of online VarBC for our LAM con-
figuration of HAFS. The control experiment borrows bias correc-
tion coefficients from GDAS, importing them for each outer loop
of the analysis. These GDAS-based coefficients are obtained di-
rectly from the real-time GDAS, which were updated via the
same GSI-based VarBC method detailed in section 2 over an
equivalent training period.

The online experiment initializes BC coefficients from
GDAS values for the first analysis cycle, and then transi-
tions to self-cycling these coefficients within HAFS, updat-
ing them during each outer loop and using the resulting
output coefficients as the first guess for the subsequent cycle
(Hu et al. 2016). In this way, the cycling of coefficients al-
lows bias to accumulate during the data assimilation cycles,

limiting potential system biases arising from the borrowing
of GDAS coefficients. In other words, the configuration lim-
its potential influence from an outside model and allows for
better identification and understanding of biases arising
from the satellite instruments and measurement operator
alone.

d. Observations and data assimilation schedule

The experiments begin at 0000 UTC 18 August and end at
0000 UTC 22 September 2020, covering nine storms from TC
Josephine to Hurricane Sally. In particular, this time span is
chosen to include Hurricane Laura, a category-4 hurricane that
was the strongest TC of the season by maximum sustained
winds and among the most powerful hurricanes on record to
make U.S. landfall (NOAA 2021). Our HAFS experiments as-
similate measurements at 0000, 0600, 1200, and 1800 UTC each
day, and generate medium-range (102-h) deterministic predic-
tions on 0000 and 1200 UTC cycles. We also omit the first
7 days of data assimilation to allow HAFS to become indepen-
dent from the GDAS initial conditions that are used to initialize
experiments.

The suite of assimilated measurements includes all meas-
urements assimilated by GFS except proprietary measure-
ments, namely Aircraft Communications Addressing and
Reporting System data and cloudy radiances. In addition,
HAFS assimilates tail Doppler radar and TC inner core
radar data as collected on aircraft reconnaissance flights,
which are not assimilated by the GDAS. In addition, HAFS
assimilates inner core data, including tail Doppler radar,
dropsonde, and flight-level wind observations, which are
not assimilated by the GDAS.

The Geophysical Fluid Dynamics Laboratory (GFDL)
vortex tracker is used to generate the TC track information
(Biswas et al. 2018). TC track, maximum 10-m surface wind,
and minimum surface pressure from model forecasts are
verified against “best track” data from the National Hurri-
cane Center (Hazelton et al. 2021).

4. Results

The pair of experiments demonstrate substantial differences
in domainwide error characteristics as well as forecast track and
intensity errors, which we describe in this section. Moreover, we
will show that many of the differences can be easily interpreted
by analyzing the diverging evolution of predictor weights. More
precisely, changes in weighted predictor fields over the domain
amount to explainable differences in model variable fields, such
as temperature and humidity, by changing the bias applied to
the observation space background. For this purpose, we demon-
strate how the online configuration affects weighted predictor
fields and drives spatially coherent differences in thermody-
namic variables between the experiments. From this analysis,
we can determine how this configuration affects error character-
istics and consequently improves TC forecasts. In general, we
focus on variables that are directly related to design choices in
our data assimilation system, choosing to omit variables that are
more complex to attribute, such as storm surge and wave gener-
ation. Although these hazards are vitally important to consider
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when designing operational modeling systems, we limit the
scope of this study to variables with simple interpretability.

a. Forecast error verification

Section 4b provides a verification of TC forecast error
statistics, specifically: track, 10-m maximum winds, and min-
imum sea level pressure (SLP). These statistics are summa-
rized for all storms in Fig. 2a, where forecast mean errors

are calculated from a sample of storm forecasts over the
6-week experimental period and plotted as a function of
forecast lead time. The number of cases for each time is also
given on the secondary axis.

For each variable analyzed, error statistics up to 18–24 h
are nearly identical across both experiments, after which dif-
ferences begin to emerge. In regard to track performance, the
online configuration provides consistently better results after

(a)

(b)

FIG. 2. Forecast error verification of control and online experiments. (a) Error for all TCs over
the experimental period and (b) TCs without aircraft reconnaissance data are omitted. These
errors are verified against NHC best track and intensity data.
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18 h of lead time, while the intensity forecasts provide gener-
ally improved results over the same range.

Several previous studies have demonstrated that considerable
forecast improvements can be obtained from the assimilation of
flight level radar and dropsonde observations from reconnais-
sance flight missions (Zhang et al. 2009; Aksoy et al. 2012;
Lu et al. 2017; Hartman et al. 2021; Sippel et al. 2022). Specifi-
cally, the assimilation of inner-core observations has been
shown to significantly improve intensity forecasts even without
the help of ad hoc vortex relocation techniques. For this reason,
we further stratify the results to include only storms that had
multiple reconnaissance flight missions requested by the Na-
tional Hurricane Center, hereby referred to as “well-observed”
storms (NHC; Fig. 2b). These storms are Hurricanes Laura,
Marco, Sally, and Teddy. Since land-threatening storms are the
most likely to receive NHC reconnaissance flight authorization,
the accurate forecasting of these storms is particularly important
for NWP centers.

Unsurprisingly, the forecast error statistics for well-observed
storms are quite similar to the cumulative results for all storms,
but a few key differences stand out. In regards to track forecasts,
both experiments exhibit similar errors up to about 24 h, after
which the online configuration exhibits markedly better perfor-
mance. The intensity forecast results are mixed up until 42 h, af-
ter which the online experiment reports consistently lower errors.
Note that the total intensity errors for these well-observed storms
are generally higher than for the all-storms dataset; this is because
these well-observed storms are, on average, more intense than
the excluded storms, leading to proportionally larger errors.

It is likely that the similar performance and relatively low
intensity errors of these experiments at early lead times is a

reflection of the influence of reconnaissance observations.
The divergence of these configurations and subsequent supe-
riority of the online experiment is perhaps a sign that the
HAFS BC configuration benefits significantly from the online
clear-sky satellite bias correction when combined with valu-
able inner-core observations. Since the assimilated clear-sky
radiances are unlikely to include measurements near the TC
vortex due to extensive cloud cover, it instead seems likely
the clear-sky radiance bias correction results in an improved
characterization of the surrounding synoptic environment
while these inner-core observations “fill in the gaps” near the
storm center. Furthermore, if these inner-core observations
can more precisely place the storm vortex location within the
domain, and large-scale features are more accurate as a result
of the online bias correction scheme, improved intensity fore-
casts will follow as a result of a more accurate environmental
characterization (Aksoy et al. 2012; Lu et al. 2017; Hartman
et al. 2021).

As a final verification of forecast performance and variability,
we summarize model forecast differences between the control and
online experiment with Fig. 3. We examine the same error statis-
tics as above but take the difference in absolute errors between ex-
periments at each lead time and plot the median as well as inner
and outer quintiles. This test essentially shows us the frequency in
which one experiment outperforms the other at each lead time. In
regards to track performance, the online experiment generally
provides improved error statistics more frequently than the con-
trol after 24-h lead time, as indicated by the median and inner
quintiles. Conversely, the median and inner quintiles very consis-
tently hover around zero for max wind and SLP. Comparing these
results to Fig. 2a would suggest that while the frequency of

FIG. 3. Error verification of forecast absolute error differences between control and online ex-
periments (online 2 control). The median difference is given in blue, while the inner and outer
quintiles are given in purple and red, respectively. Errors are verified against NHC best track
and intensity data.
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improved error statistics is relatively the same across experiments,
the errors themselves tend to be smaller for the online BC experi-
ment. We note that we performed a similar analysis for well-
observed storms only (not shown) and the results were marginally
improved in expected ways; i.e., all quintiles are slightly elevated
in a manner that would be expected based on Fig. 2b.

b. Domain-averaged error verification

Next, we compare domainwide variables, such as temperature,
humidity, and wind speeds. We verify the data versus ECMWF
Reanalysis v5 (ERA5) data, which uses 4DVar data assimilation
and comprehensive observation datasets including all-sky radian-
ces; it is also relatively high-resolution compared to other global
reanalysis datasets (Hersbach et al. 2020).

Figure 4 displays vertical profiles of horizontally averaged
bias and root-mean-square error (RMSE) values for pertinent
variables, i.e., temperature, specific humidity, and u and y

winds, for both control and online experiments at 0000 UTC
analysis time. Note that the investigated domain is slightly re-
stricted compared to the model analysis domain (see Fig. 1) in
order to minimize the effects of boundary conditions. In addi-
tion, the vertical profiles are capped at 200 mb (1 mb 5 1 hPa),
above which the effects of the model-top “sponge layer” pro-
duce unpredictable and difficult-to-characterize results.

The most prominent differences between control and on-
line experiment error profiles can be found in temperature
and humidity profiles, which is unsurprising given that these
variables share a strong error dependence with BT. Both tem-
perature bias profiles in Fig. 4a reflect a domainwide negative
temperature bias present in this configuration of HAFS, par-
ticularly in the lower troposphere; however, there are marked
differences in temperature bias and RMSE profiles in the mid
and upper troposphere. The online experiment exhibits a slightly
positive temperature bias from 950 to 750 mb, a more negative
bias from 750 to 250 mb, and a significantly more positive bias
above 250 mb. The specific humidity bias profile is largely similar
between the two experiments; however, the control configuration
exhibits slightly more negative biases at the surface and through
the midtroposphere, from approximately 650 to 300 mb. Results
are mixed for u and y winds, with only very slight differences in
RMSE profiles as shown in Fig. 4b. We note that since these sta-
tistics are domain-averaged, regional biases of the opposing sign
can cancel each other out, a fact that is explored further in the
next section.

We also examine the temperature, specific humidity, u and y

wind RMSE profiles across forecast lead times, where the online
configuration tends to exhibit more substantial improvements in
error profiles. Figure 5 shows time series of horizontal- and ver-
tical column averages of RMSE for these variables taken from
0 to 102 h. Like the calculations for Fig. 4, the verification do-
main is restricted to a subset of points within the total HAFS
domain (see Fig. 1). Each variable is column averaged from 900
to 250 mb so as to minimize the influence of surface and model
top boundary conditions, except for specific humidity which was
averaged up to 500 mb given the small mixing ratios in the up-
per troposphere. Temperature errors show notable improve-
ments over early and late lead times, albeit with little difference

between control and online from 6- to 84-h lead time. Con-
versely, across specific humidity and u and y winds, the differ-
ence between control and online is small at early lead times but
consistently demonstrates improved error statistics at longer
lead times, beyond 6–18 h. These improvements mostly trail off
at lead times beyond 84 h. The improved domainwide error sta-
tistics for the online configuration at longer lead times shown in
Fig. 5 mirror the improvements we see in storm track and inten-
sity errors at longer lead times, as referenced in Fig. 2.

c. Temperature and humidity fields

In this section, we discuss major differences in the temperature
and humidity fields between the online and control experiment.
We highlight temperature and humidity in our discussion, as pro-
files of these variables are the most directly related to radiance.
Furthermore, we emphasize discrepancies in experiments at dif-
ferent height layers and horizontally across the domain, particu-
larly overland versus overocean. In doing so, we illustrate how
the online bias correction strategy directly influences our state es-
timates, which in turn explain different forecast results between
experiments.

In Fig. 6, we examine vertical profiles of domain- and time-
averaged differences in temperature and specific humidity be-
tween online and control experiments. We also differentiate
between total, overland, and oversea differences. Given that
the domain is mostly ocean, it is unsurprising that total differ-
ence profiles for both temperature and humidity are quite
close to their respective profiles over the ocean. However,
stark differences exist over land versus ocean, which can be
clearly distinguished in Figs. 7 and 8.

Relative to the control, we find that online configuration pro-
duces cooler surface and lower-tropospheric temperature fields
in total and oversea locations, with a local minimum of around
850 mb, before becoming comparatively warmer into the mid-
troposphere, with local maxima around 650 and 350 mb. The
warmest areas exist over the central Atlantic, particularly where
most storms track during our experiments, as shown in Fig. 7.
Conversely, this configuration produces slightly warmer tempera-
ture fields over land throughout the lower troposphere, with local
maxima of around 900 mb. Throughout the midtroposphere, dif-
ferences over land are slightly positive or near zero, although
throughout western and northern North America these differ-
ences are strongly negative. Above 300 mb, all three profiles take
a sharply negative turn.

Specific humidity exhibits less coherent layerwise patterns,
as shown in Fig. 8, but examining its domain-averaged vertical
profile in Fig. 6 reveals some notable differences overland ver-
sus overocean. For example, while the online experiment is
uniformly drier at the surface, the total and oversea specific
humidity difference is positive from 850 to 300 mb, with local
maxima at 825 and 500 mb. Meanwhile, the overland profile
remains dry throughout the lower troposphere, with a local
minima at 775 mb, before switching signs at 650 mb and re-
maining positive throughout the rest of the midtroposphere,
and reaching a local maximum at 525 mb. Above 300 mb, all
three profiles approach zero, reflecting the low humidity in
the upper troposphere.
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(a)

(b)
FIG. 4. (a) Bias and (b) RMSE verification of temperature, specific humidity, and u and y winds with ERA5 data, respectively. Data are

time and domain averaged and displayed as a vertical profile.

WEATHER AND FORECAS T ING VOLUME 381726

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 11/09/23 04:57 PM UTC



As we will demonstrate in section 4d, these differences
over land and sea may arise from a number of factors, the
most obvious of which are different radiative characteristics
overland versus water. In addition, high-quality in situ ob-
serving systems are far more prevalent over land, which
may lead to different bias characteristics. Alternatively, the
analysis overland is less dependent on satellite radiances
and thus fewer differences exist between the two configura-
tions, explaining the overall less dramatic difference in tem-
perature overland.

d. Predictor evolution and verification

To understand why the online configuration results in im-
proved forecast errors and notable differences in model fields,
it is first necessary to evaluate how the online configuration
affects the evolution of bias correction predictor coefficients
as well as the weighted predictors themselves. It would be dif-
ficult to evaluate the individual effects of each and every
instrument- and channel-specific predictor field, and so in-
stead we narrow our analysis to specific channels with quali-
ties that are beneficial for our investigation.

With this in mind, we have chosen to focus on channel 4 of
the Advanced Microwave Sounding Unit-A (AMSU-A)
NOAA-15 (N15) satellite instrument. This channel measures
radiance over a frequency of 52.8 GHz, has a weighting func-
tion that peaks near the surface, and has a relatively wide

spread of weighted predictor values, making it convenient for
our analysis (Goldberg et al. 2001; Deng et al. 2009; Liu et al.
2012; Zhu et al. 2016). Furthermore, the AMSU-A instruments
onboard NOAA polar-orbiting satellites are often indicated by
ensemble and adjoint sensitivity analysis to yield large impacts on
synoptic-scale forecasts (Ota et al. 2013). Moreover, the instru-
ment has a high volume of observations ingested after quality con-
trol and relatively large differences in channel-specific weighted
predictor values between control and online experiments.

Figures 9a and 9b show the evolution of channel-4 AMSU-A
N15 coefficients and weighted predictors over the 5 weeks of cy-
cled DA analyzed for this study. Note that the magnitude of the
unitless coefficients in Fig. 9a vary widely and that these coeffi-
cients are multiplied by bias predictors whose magnitude varies
considerably themselves. Thus, the values of the coefficients
are not as significant as the weighted predictors themselves in
Fig. 9b which have units of brightness temperature and there-
fore are comparable.

Instead, Fig. 9a is notable because it shows the rate at which
the online coefficients depart from values estimated by
GDAS over the course of our experiments. While some coef-
ficients seem to reach a quasi-steady estimate in 1–3 weeks,
others, such as the global offset coefficient, appear to diverge
up until the end of the experiment. Figure 9a also suggests
that the HAFS online coefficients are considerably more
noisy than their GDAS counterparts. Given that these HAFS

FIG. 5. (a) Temperature, (b) specific humidity, (c) u wind, and (d) y wind RMSE verification with ERA5 data. Data
are domain and column averaged, and taken at 6-h lead-time increments up to 102 h. Columns span vertically from
900 to 250 mb for temperature and wind errors, and from 900 to 500 mb for specific humidity.
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coefficients are derived over a limited-area domain and are in-
fluenced by boundary conditions, this behavior is not surpris-
ing. Also note that since the CLW predictor is not used by
GDAS, the value of its predictor is exactly zero for the en-
tirety of the control experiment.

Figure 9b displays the evolution of the weighted predic-
tors themselves, that is, the product of domainwide predic-
tor variables and the coefficient weights as featured in
Fig. 9a. These values have units of BT (K), and combined
constitute the total bias applied to the observation-space
background as described in section 2. Note the strong diur-
nal pattern in weighted predictor value, and the relative
similarity in values between experiments for the polynomial
predictors. Instead, differences in the global offset, CLW,
lapse rate, lapse rate squared, and emissivity predictors are
predominated. Furthermore, much like in Fig. 9a, it can be
seen that certain predictors begin to diverge 1–2 weeks into
the experimental period, with some continuing to diverge
even at the end of the 5-week period.

Although we have chosen to focus on channel 4 of the
AMSU-A N15 satellite instrument, there are many more
significant channels across multiple instruments that fulfill
similar criteria. Figure 10 details a number of these chan-
nels. Each bar plot displays a different instrument’s time-
and domain-average weighted predictor value for all nine
predictors for the control and online experiment, as well as
their difference.

Notice that for low-numbered channels, which tend to peak
at or near the surface, the emissivity-weighted predictors tend
to produce large disparities between the control and online
configuration. Alternatively, for high numbered channels that
peak in the upper troposphere and stratosphere, the predictor
of interest tends to be the lapse rate and lapse rate squared
predictors. It is also noteworthy that the distributions of
weighted predictor values across instruments are very similar,
e.g., channel 11 has similar predictor values and differences
across multiple instruments. This suggests that these differ-
ences in bias are dominated by model bias. We speculate that
model physics may be the major contributor to such biases,
but ultimately emphasize this as an example of the impor-
tance of eliminating outside model bias, such as model bias
from GDAS.

e. Weighted predictor fields

As an example of how the online VarBC method may affect
model fields, it is useful to examine the difference in the
weighted predictor fields between experiments for one specific
channel and instrument, and then compare these differences to
differences in model field variables. For the same reasons men-
tioned earlier, we examine the difference in weighted predictor
fields between the online and control experiment for channel 4
of AMSU-A on theN15 satellite.

Figure 11 shows the time-averaged online-control differences
in weighted predictor field contributions for each predictor for

FIG. 6. Vertical profiles of domain- and time-averaged (a) temperature and (b) specific humidity differences be-
tween the online and control experiment (online 2 control). Differences overland, oversea, and total differences are
all considered.
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the AMSU-A channel 4. Although many of the weighted
predictor fields show little coherence, a few display notable
patterns. The global offset term tends to contribute to a uni-
form negative bias estimate across the entire domain, with a
few exceptions that tend to congregate around coastlines,
while the emissivity predictor is strongly positive across

most of the North and South American landmass and mostly
zero overocean. It is unsurprising that the emissivity predic-
tor produces the starkest differences given that this channel
peaks near the surface, and, as previously mentioned, this
predictor tends to dominate for low-altitude peaking chan-
nels. The cloud liquid water predictor is conversely zero

FIG. 7. Time-averaged temperature differences between the online and control experiment at 950, 850, 750, 600, 450, and 300 mb (online
2 control). Note that a Gaussian smoothing filter has been applied.

FIG. 8. Time-averaged specific humidity differences between the online and control experiment at 950, 850, 750, 600, 450, and 300 mb
(online2 control). Likewise, a Gaussian smoothing filter has been applied.
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across most of the landmass, but exhibits varied patterns
over water, having positive values over the Caribbean and
mid-Atlantic basin versus negative values in the northern
Atlantic region and in the eastern Pacific. The lapse rate
and lapse rate squared predictors tend to produce a quasi-
uniform pattern, albeit with the magnitude of the predic-
tors increasing slightly toward the equator, while the
polynomial predictors display less coherence across the
domain.

In Fig. 12, we consider the influence of a single predictor by
comparing time-averaged online 2 control temperature differ-
ences at 950 mb to weighted predictor field differences for the
emissivity predictor. A correlation can be seen between the pos-
itive contribution of the emissivity predictor bias term and the
warmer temperatures present overland in the online experi-
ment’s analysis. Since channel 4 peaks near the surface, it can
be assumed the bias term has directly or indirectly affected the
model field, but given the magnitude of the bias term it is likely
this relationship falls under the former category. Of course, it is
difficult to fully attribute these temperature field changes with-
out fully considering the effects of each predictor over every
channel and instrument, a task that is outside the scope of this
paper. Instead, we focus on the macro effects of the self-cycling
bias correction technique and its effects on TC track and inten-
sity forecasting.

f. Case study

To give an example of how the online VarBC alters the track
and intensity forecasts compared to the control experiment, we
examine “both configuration” forecasts of Hurricane Teddy.
Teddy, the 19th TC of the 2020 season, was a category-4 Cape
Verde hurricane with a particularly long track, and multiple
rapid changes in intensity during its lifetime. Teddy developed
into a tropical cyclone on 14 September and a category-1 hurri-
cane on 16 September, subsequently reaching its peak intensity
on 17 September. The storm weakened over the next few days
before it reintensified after interacting with a midlatitude upper-
level trough. It later weakened and dissipated ather making
landfall over Nova Scotia. Teddy’s track was almost entirely
over the observation-sparse ocean, and due to its significant
land threat, featured multiple NHC reconnaissance mission
datasets. It also featured some of the largest and strongest At-
lantic hurricane wind fields on record (NOAA 2021). For these
reasons, we determined Teddy would be an excellent choice to
examine as a case study for our satellite radiance bias correction
experiments.

Figure 13 shows Teddy’s NHC best track estimate, along with
the evolution of both the control and online experiments’ track
forecasts, and Fig. 14 displays similar information but for maxi-
mum wind speed error. The improved track forecasting skill of

(a) (b)

FIG. 9. (a) Bias predictor coefficient evolution over the course of the 5-week experiment period the GDAS BC
(red) and HAFS BC (blue) for channel 4 of the AMSU-AN15 satellite instrument. (b) Weighted bias predictor value
evolution over the same period, in units of BT (K).
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the online experiment, especially at longer forecast lead times,
is evident. Furthermore, we find that the online configuration
results in noticeably improved track and intensity errors around
the initial TC intensification time (;0000 UTC 14 September),
and likewise for track error during Teddy’s reintensification
(;1200 UTC 22 September).

These conclusions are further supported in Fig. 15, where
track and intensity error statistics are plotted as a function of
lead time. Although the intensity forecast results are mixed at
early lead times, the online configuration features substan-
tially improved intensity forecasts after 42 h.

To explain how the online configuration produces more ac-
curate track and intensity forecasts, we provide a more de-
tailed analysis of model field variables at these two pivotal
moments in Teddy’s evolution: Initial intensification and re-
intensification. At initial intensification, we find that the online
configuration produces a TC vortex that is deeper, tighter, and
intensifies more quickly than for the control experiment. We
examine a special verification domain that forms a ring or an-
nulus around the vortex, extending from 200 to 2000 km from
the predicted vortex center. In Fig. 16a, we display a time se-
ries of model field differences between online and control
(online 2 control) for four pertinent model variables: temper-
ature, specific humidity, relative humidity, and geopotential
height. Consequently, we find that the online configuration
produces environmental conditions that are moister at low al-
titudes surrounding the storm, leading to conditions that are
more conducive to rapid intensification.

Following Teddy’s initial intensification and subsequent decay,
the storm drifted northward and interacted with an upper-level
trough on 22 September, as seen in Fig. 17a. A secondary intensi-
fication occurred, resulting in a category-2 hurricane, which was
accompanied by an altered north-northeastward track, as seen in
Figs. 13 and 14. Although both configurations provided skillful
predictions for intensity at this point, the control produced track
forecasts that extended too far east initially, while the online ex-
periment produced much more accurate track forecasts. Analysis
of the model fields at extended lead times (481 h) revealed that
the control configuration predicted the upper-tropospheric
trough to have propagated farther east than observed, as sug-
gested in Fig. 13a, while the online configuration predicted a
farther westward trough location, as can be seen in Fig. 17b.
Due to this slightly more inaccurate environmental characteri-
zation from the control experiment, the forecasts initialized
from these analyses brought the TC too far to the east.

To summarize, we find that online bias correction method
produces improvements in track and intensity forecasting in this
case, although we caution against the generalization of these re-
sults alone. Instead, we highlight that this case study demon-
strates how a more accurate characterization of large-scale
environment can lead to improved forecast results, particularly
when coupled with inner-core observational datasets. Combined
with the forecast error verification over a range of TCs pre-
sented in section a, particularly those with ample inner-core ob-
servations, we hypothesize that these results could extend to
other TC forecasts as well.

FIG. 10. These panels detail time- and domain-averaged weighted predictor values for select instruments and channels for each
experiment. The x axis gives each weighted predictor, while the red, blue, and black colored bars give their time- and domain-
averaged values for the control experiment, online experiment, and their difference, respectively. They are (a) MHS MetOp-B,
channel 1; (b) AMSU-A N15, channel 4; (c) MHS NOAA-19 (N19), channel 1; (d) AMSU-A NOAA-18 (N18), channel 11;
(e) AMSU-A N18, channel 11; (f) AMSU-A MetOp-A, channel 11.
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5. Discussion and conclusions

For many limited-area models, the decision to operate on a
partially cycling basis often comes down to concerns of model
drift and an insufficient sampling of innovations for estimating

bias for satellite radiance measurements. For modeling sys-
tems that are able to avoid these challenges, the ability to run
continuous, fully cycling, domainwide data assimilation can
prove extremely valuable. One such benefit comes from the

FIG. 11. Time-averaged weighted predictor differences between online and control experiments (online 2 control) for channel 4 of the
AMSU-AN15 instrument, in units of BT (K).

FIG. 12. (left) The time-average temperature field difference between control and online at 950 mb (online 2 control).
(right) The difference in the emissivity predictor between control and online for channel 4 on the AMSU-A N15 instru-
ment. Note that the channel-4 weighting function peaks near the surface.
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ability to self-cycle information such as innovations and
model fields needed to estimate key parameters for specifying
measurement bias, namely, predictor weights or “coefficients”
that are used for statistical bias models. The decision for re-
gional models to adopt bias correction coefficients from
global models is usually one of practicality, given that partially
cycling systems are unable to adopt an online configuration.
However, even in cases where the system is fully cycling, these
coefficients are still often adopted from lower-resolution
global models. This decision is made because regional domain
sizes are assumed to be too small, and global model data ben-
efits from more thorough model tuning that could produce
better bias correction configurations.

The current study investigates the potential of developing a
fully cycled prediction system for the NOAA Hurricane Analysis
and Forecast System (HAFS) that performs its own self-contained
bias correction scheme for satellite radiance measurements.

A number of key conclusions can be drawn from comparisons
of a fully cycled HAFS system with and without this feature.
First, introducing online estimates of bias correction parameters
can produce improved TC forecasts, even in limited-area models
such as HAFS. We postulate that the fully online bias correction
leads to improved characterization of the surrounding synoptic
environment during data assimilation, leading to more accurate
steering flow associated with storms. In particular, we find the
impact of online bias correction to be most noticeable for storms
with extensive inner-core observations, as these observations can
more precisely characterize TC vortex location within the do-
main by “filling in the gaps” near the storm center. We explore
this finding in more detail for a case study of Hurricane Teddy,
where the online configuration produced an environment that
was more conducive to rapid intensification and consequently
did a better job of forecasting Teddy’s initial intensification
and development. Likewise, Teddy’s later interaction with

FIG. 13. Track error verification, (a) control vs (b) online, for AL20, Hurricane Teddy. The blue lines represent
forecasts generated early in the model time span, transitioning to red as forecast time progresses. Black represents the
best track estimate.

FIG. 14. As in Fig. 13, but for 10-m maximum wind speed.
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an upper-level trough and the resulting reintensification was
more faithfully represented by the online experiment.

We also establish that fully online satellite bias correction can
produce lower domain-averaged errors for key variables such
as temperature and humidity, although these relationships are

highly dependent on qualities such as lead time and height level
and thus are arguably less robust than the TC-focused error sta-
tistics presented is section 4a.

Furthermore, we can draw some conclusions about major
differences in mean bias over land versus over sea, and how

FIG. 15. Forecast error verification of control and online experiments for AL20, Teddy. These
errors are verified against NHC best track and intensity data.

FIG. 16. (a) Displays a time series of model field differences between online and control (online2 control) for four pertinent model var-
iables: temperature, specific humidity, relative humidity, and geopotential height. The verification domain for these variables forms an an-
nulus around the TC, extending from 200 to 2000 km around the TC. The values are column averaged from 950 to 500 mb. (b) Displays a
time-averaged vertical profile of the same variables over the same verification domain.
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these differences can be tied to how biases are specified in sat-
ellite radiance measurements. For example, we find that the
online method generally produces warmer and wetter model
states throughout the midatmosphere both over land and over
sea, but that the relationship is more complicated near the
surface. Clearly this is a reflection of different radiative char-
acteristics of land versus sea, and we demonstrate that these
differences are a direct result of weighted predictor field spec-
ification. We also note that these differences in mean bias are
largest over sea, where in situ measurements are sparse and
accurate specification of satellite radiance measurements be-
comes particularly important.

This study also shows that modeling systems that ingest only
clear-sky radiances should not adopt configurations that are
tuned for ingesting all-sky radiances. In this case, the GDAS
model has tuned its bias predictor coefficient values toward
all-sky radiances, e.g., setting the cloud liquid water predictor
to zero across the entire domain. This is problematic for the
control HAFS system considering said system only assimilates
clear-sky radiances, and thus would benefit from the cloud liq-
uid water bias correction term. A similar conclusion can be
drawn for models that borrow bias information, among other
things, from global models with different model tops. HAFS
has a maximum pressure level of 2 hPa, whereas GDAS ex-
tends well up into the upper stratosphere. This disparity results
in a strong difference in model variables, such as temperature,
at high altitudes. It also results in peculiar and unexplainable
values for weighted predictors in channels that peak at high al-
titudes, particularly the global offset, lapse rate, and lapse rate
squared predictors. These disparities make it difficult to assess
the effectiveness of these bias predictors for these channels.

We also note that experiments performed in the current
study adopt a single domain with 6-km grid spacing, which dif-
fers from the operational configuration of HAFS that uses a
2-km nest. While our results demonstrate that adopting a fully
online bias correction strategy can produce notable differ-
ences in forecast skill, particularly mean errors, we speculate
that these differences may be even larger if our study adopted

the same convective-permitting 2-km grid spacing that is used
for the operational HAFS. Doing so will further reduce any
similarities in model process error that exist between resolved
scales and choices of physical parameterization schemes be-
tween regional and global configurations of FV3 (HAFS ver-
sus GFS), and further exacerbate the issues raised in this
study for quantifying bias in radiance measurements.

In concluding, we also note several directions in which this
research could be continued or expanded. Given that several
predictor coefficients and weighted predictor differences con-
tinue to diverge even at the end of the 6 weeks of cycling data
assimilation, it may be useful to extend this study for entire
hurricane seasons. It would also be beneficial to reproduce
the online bias correction experiment starting with zero val-
ues for coefficients, as opposed to starting with coefficients
adopted from GDAS. In this way, we could eliminate bias
from the GDAS model more quickly, and it may further im-
prove forecasts at earlier cycles in the experiment period.
Eventually, this research may find value for the expansion of
radiance assimilation from just clear-sky assimilation to all-
sky assimilation; however, since all-sky radiance assimilation
is still an active area of research, it is difficult to assess how
this research may be relevant. Last, future research will focus
on additional requirements needed to maintain a fully cycled
ensemble data assimilation system for operational hurricane
prediction. This effort parallels similar efforts underway for
other regional modeling applications, such as severe convec-
tive storms (e.g., Schwartz et al. 2022).
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FIG. 17. (a) The 48-h lead-time 250-mb geopotential height model field generated at 0000 UTC 21 Sep for the con-
trol experiment. (b) The geopotential height difference between online and control at the same forecast time, lead
time, and pressure level (online vs control). In both cases, a Gaussian smoothing filter has been applied. A black “X”

marks the NHC best estimate location for Hurricane Teddy at 0000 UTC 23 Sep.
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Orion computing facility and are available from the corre-
sponding author upon request. Specifically, model fields are
available in GRIB2 format and storm track and intensity met-
rics are stored in text files.
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